A HYBRID BI-DIRECTIONAL WIRELESS EV CHARGING SYSTEM TOLERANT TO PAD MISALIGNMENT


project center in trichy


Electric vehicles (EVs) are becoming increasingly popular as a means of future transport for sustainable living. However, wireless charging of EVs poses a number of challenges related to interoperability, safety, pad misalignment etc. In particular, pad-misalignments invariably cause changes in system parameters which in turn lead to increase in losses as well as reduction in power throughput, making the charging process long and inefficient. Consequently, wireless charging systems that are less sensitive to pad-misalignments have become preferable. This paper, therefore, presents a hybrid Wireless Power Transfer (WPT) system that charges EVs at constant rate despite large misalignments between charging pads. The proposed charging system uses a combination of two different resonant networks to realize a constant and efficient charging process. A mathematical model is also developed, showing as to how the two resonant networks can be combined to compensate for pad-misalignments. To demonstrate the validity of the proposed concept as well as the accuracy of the mathematical model, theoretical performance is compared with both simulations and experimental results of a prototype 3.3 kW hybrid bidirectional WPT system. Results clearly indicate that the proposed hybrid WPT system is efficient and offers a constant charging profile over a wide range of spatial (3D) pad-misalignments.

Comments

Popular posts from this blog

Security Solution for Internet Of Things(IOT)

Gram Sandesh Transmission-A Web Based Information System for Farmers

ANDROID APPLICATION CONTROLLED REMOTE ROBOT OPERATION